
y(10.0 s) = −50.0 m + (−1.1 m/s)(10.0 s) + 1
2(−0.54 m/s2)(10.0 s)2 = −88.0 m

vy(10.0 s) = −1.1 m/s + (−0.54 m/s2)(10.0 s) = −6.5 m/s.

The position and velocity at t = 10.0 s are, finally,

r→ (10.0 s) = (216.0 i
^

− 88.0 j
^

) m

v→ (10.0 s) = (24.1 i
^

− 6.5 j
^

)m/s.

The magnitude of the velocity of the skier at 10.0 s is 25 m/s, which is 60 mi/h.

Significance

It is useful to know that, given the initial conditions of position, velocity, and acceleration of an object, we can
find the position, velocity, and acceleration at any later time.

With Equation 4.8 through Equation 4.10 we have completed the set of expressions for the position, velocity, and
acceleration of an object moving in two or three dimensions. If the trajectories of the objects look something like the “Red
Arrows” in the opening picture for the chapter, then the expressions for the position, velocity, and acceleration can be quite
complicated. In the sections to follow we examine two special cases of motion in two and three dimensions by looking at
projectile motion and circular motion.

At this University of Colorado Boulder website (https://openstaxcollege.org/l/21phetmotladyb) ,
you can explore the position velocity and acceleration of a ladybug with an interactive simulation that allows you
to change these parameters.

4.3 | Projectile Motion

Learning Objectives

By the end of this section, you will be able to:

• Use one-dimensional motion in perpendicular directions to analyze projectile motion.

• Calculate the range, time of flight, and maximum height of a projectile that is launched and
impacts a flat, horizontal surface.

• Find the time of flight and impact velocity of a projectile that lands at a different height from that
of launch.

• Calculate the trajectory of a projectile.

Projectile motion is the motion of an object thrown or projected into the air, subject only to acceleration as a result of
gravity. The applications of projectile motion in physics and engineering are numerous. Some examples include meteors
as they enter Earth’s atmosphere, fireworks, and the motion of any ball in sports. Such objects are called projectiles and
their path is called a trajectory. The motion of falling objects as discussed in Motion Along a Straight Line is a simple
one-dimensional type of projectile motion in which there is no horizontal movement. In this section, we consider two-
dimensional projectile motion, and our treatment neglects the effects of air resistance.

The most important fact to remember here is that motions along perpendicular axes are independent and thus can be
analyzed separately. We discussed this fact in Displacement and Velocity Vectors, where we saw that vertical and
horizontal motions are independent. The key to analyzing two-dimensional projectile motion is to break it into two motions:
one along the horizontal axis and the other along the vertical. (This choice of axes is the most sensible because acceleration
resulting from gravity is vertical; thus, there is no acceleration along the horizontal axis when air resistance is negligible.)
As is customary, we call the horizontal axis the x-axis and the vertical axis the y-axis. It is not required that we use this
choice of axes; it is simply convenient in the case of gravitational acceleration. In other cases we may choose a different set

of axes. Figure 4.11 illustrates the notation for displacement, where we define s→ to be the total displacement, and x→

and y→ are its component vectors along the horizontal and vertical axes, respectively. The magnitudes of these vectors are
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s, x, and y.

Figure 4.11 The total displacement s of a soccer ball at a point along its path. The vector s→ has

components x→ and y→ along the horizontal and vertical axes. Its magnitude is s and it makes an angle

θ with the horizontal.

To describe projectile motion completely, we must include velocity and acceleration, as well as displacement. We must find
their components along the x- and y-axes. Let’s assume all forces except gravity (such as air resistance and friction, for
example) are negligible. Defining the positive direction to be upward, the components of acceleration are then very simple:

ay = −g = −9.8 m/s2 ( − 32 ft/s2).

Because gravity is vertical, ax = 0. If ax = 0, this means the initial velocity in the x direction is equal to the final velocity

in the x direction, or vx = v0x. With these conditions on acceleration and velocity, we can write the kinematic Equation

4.11 through Equation 4.18 for motion in a uniform gravitational field, including the rest of the kinematic equations for
a constant acceleration from Motion with Constant Acceleration. The kinematic equations for motion in a uniform
gravitational field become kinematic equations with ay = −g, ax = 0 :

Horizontal Motion

(4.19)v0x = vx, x = x0 + vx t

Vertical Motion

(4.20)y = y0 + 1
2(v0y + vy)t

(4.21)vy = v0y − gt

(4.22)y = y0 + v0y t − 1
2gt2

(4.23)vy
2 = v0y

2 − 2g(y − y0)

Using this set of equations, we can analyze projectile motion, keeping in mind some important points.

Problem-Solving Strategy: Projectile Motion

1. Resolve the motion into horizontal and vertical components along the x- and y-axes. The magnitudes of the

components of displacement s→ along these axes are x and y. The magnitudes of the components of velocity
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v→ are vx = vcosθ and vy = vsinθ, where v is the magnitude of the velocity and θ is its direction relative

to the horizontal, as shown in Figure 4.12.

2. Treat the motion as two independent one-dimensional motions: one horizontal and the other vertical. Use the
kinematic equations for horizontal and vertical motion presented earlier.

3. Solve for the unknowns in the two separate motions: one horizontal and one vertical. Note that the only
common variable between the motions is time t. The problem-solving procedures here are the same as those
for one-dimensional kinematics and are illustrated in the following solved examples.

4. Recombine quantities in the horizontal and vertical directions to find the total displacement s→ and velocity

v→ . Solve for the magnitude and direction of the displacement and velocity using

s = x2 + y2, θ = tan−1(y/x), v = vx
2 + vy

2,

where θ is the direction of the displacement s→ .

Figure 4.12 (a) We analyze two-dimensional projectile motion by breaking it into two independent one-dimensional motions
along the vertical and horizontal axes. (b) The horizontal motion is simple, because ax = 0 and vx is a constant. (c) The

velocity in the vertical direction begins to decrease as the object rises. At its highest point, the vertical velocity is zero. As the
object falls toward Earth again, the vertical velocity increases again in magnitude but points in the opposite direction to the initial
vertical velocity. (d) The x and y motions are recombined to give the total velocity at any given point on the trajectory.
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Example 4.7

A Fireworks Projectile Explodes High and Away

During a fireworks display, a shell is shot into the air with an initial speed of 70.0 m/s at an angle of 75.0° above

the horizontal, as illustrated in Figure 4.13. The fuse is timed to ignite the shell just as it reaches its highest point
above the ground. (a) Calculate the height at which the shell explodes. (b) How much time passes between the
launch of the shell and the explosion? (c) What is the horizontal displacement of the shell when it explodes? (d)
What is the total displacement from the point of launch to the highest point?

Figure 4.13 The trajectory of a fireworks shell. The fuse is set
to explode the shell at the highest point in its trajectory, which is
found to be at a height of 233 m and 125 m away horizontally.

Strategy

The motion can be broken into horizontal and vertical motions in which ax = 0 and ay = −g. We can then

define x0 and y0 to be zero and solve for the desired quantities.

Solution

(a) By “height” we mean the altitude or vertical position y above the starting point. The highest point in any
trajectory, called the apex, is reached when vy = 0. Since we know the initial and final velocities, as well as the

initial position, we use the following equation to find y:

vy
2 = v0y

2 − 2g(y − y0).

Because y0 and vy are both zero, the equation simplifies to

0 = v0y
2 − 2gy.

Solving for y gives

y =
v0y

2

2g .

Now we must find v0y, the component of the initial velocity in the y direction. It is given by v0y = v0 sinθ0,

where v0 is the initial velocity of 70.0 m/s and θ0 = 75° is the initial angle. Thus,

v0y = v0 sinθ = (70.0 m/s)sin 75° = 67.6 m/s
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and y is

y = (67.6 m/s)2

2(9.80 m/s2)
.

Thus, we have

y = 233 m.

Note that because up is positive, the initial vertical velocity is positive, as is the maximum height, but the
acceleration resulting from gravity is negative. Note also that the maximum height depends only on the vertical
component of the initial velocity, so that any projectile with a 67.6-m/s initial vertical component of velocity
reaches a maximum height of 233 m (neglecting air resistance). The numbers in this example are reasonable for
large fireworks displays, the shells of which do reach such heights before exploding. In practice, air resistance is
not completely negligible, so the initial velocity would have to be somewhat larger than that given to reach the
same height.

(b) As in many physics problems, there is more than one way to solve for the time the projectile reaches its highest
point. In this case, the easiest method is to use vy = v0y − gt. Because vy = 0 at the apex, this equation reduces

to simply

0 = v0y − gt

or

t =
v0y
g = 67.6 m/s

9.80 m/s2 = 6.90s.

This time is also reasonable for large fireworks. If you are able to see the launch of fireworks, notice that several

seconds pass before the shell explodes. Another way of finding the time is by using y = y0 + 1
2(v0y + vy)t. This

is left for you as an exercise to complete.

(c) Because air resistance is negligible, ax = 0 and the horizontal velocity is constant, as discussed earlier. The

horizontal displacement is the horizontal velocity multiplied by time as given by x = x0 + vx t, where x0 is

equal to zero. Thus,

x = vx t,

where vx is the x-component of the velocity, which is given by

vx = v0 cosθ = (70.0 m/s)cos75° = 18.1 m/s.

Time t for both motions is the same, so x is

x = (18.1 m/s)6.90 s = 125 m.

Horizontal motion is a constant velocity in the absence of air resistance. The horizontal displacement found
here could be useful in keeping the fireworks fragments from falling on spectators. When the shell explodes, air
resistance has a major effect, and many fragments land directly below.

(d) The horizontal and vertical components of the displacement were just calculated, so all that is needed here is
to find the magnitude and direction of the displacement at the highest point:

s→ = 125 i
^

+ 233 j
^

| s→ | = 1252 + 2332 = 264 m

θ = tan−1 ⎛
⎝
233
125

⎞
⎠ = 61.8°.

Note that the angle for the displacement vector is less than the initial angle of launch. To see why this is, review
Figure 4.11, which shows the curvature of the trajectory toward the ground level.
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4.3

When solving Example 4.7(a), the expression we found for y is valid for any projectile motion when air resistance is
negligible. Call the maximum height y = h. Then,

h =
v0y

2

2g .

This equation defines the maximum height of a projectile above its launch position and it depends only on the vertical
component of the initial velocity.

Check Your Understanding A rock is thrown horizontally off a cliff 100.0 m high with a velocity of

15.0 m/s. (a) Define the origin of the coordinate system. (b) Which equation describes the horizontal motion?
(c) Which equations describe the vertical motion? (d) What is the rock’s velocity at the point of impact?

Example 4.8

Calculating Projectile Motion: Tennis Player

A tennis player wins a match at Arthur Ashe stadium and hits a ball into the stands at 30 m/s and at an angle
45° above the horizontal (Figure 4.14). On its way down, the ball is caught by a spectator 10 m above the

point where the ball was hit. (a) Calculate the time it takes the tennis ball to reach the spectator. (b) What are the
magnitude and direction of the ball’s velocity at impact?

Figure 4.14 The trajectory of a tennis ball hit into the stands.

Strategy

Again, resolving this two-dimensional motion into two independent one-dimensional motions allows us to solve
for the desired quantities. The time a projectile is in the air is governed by its vertical motion alone. Thus, we solve
for t first. While the ball is rising and falling vertically, the horizontal motion continues at a constant velocity.

This example asks for the final velocity. Thus, we recombine the vertical and horizontal results to obtain v→ at

final time t, determined in the first part of the example.

Solution

(a) While the ball is in the air, it rises and then falls to a final position 10.0 m higher than its starting altitude. We
can find the time for this by using Equation 4.22:

y = y0 + v0y t − 1
2gt2.

If we take the initial position y0 to be zero, then the final position is y = 10 m. The initial vertical velocity is the

vertical component of the initial velocity:
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v0y = v0 sinθ0 = (30.0 m/s)sin 45° = 21.2 m/s.

Substituting into Equation 4.22 for y gives us

10.0 m = (21.2 m/s)t − (4.90 m/s2)t2.

Rearranging terms gives a quadratic equation in t:

(4.90 m/s2)t2 − (21.2 m/s)t + 10.0 m = 0.

Use of the quadratic formula yields t = 3.79 s and t = 0.54 s. Since the ball is at a height of 10 m at two times
during its trajectory—once on the way up and once on the way down—we take the longer solution for the time it
takes the ball to reach the spectator:

t = 3.79 s.

The time for projectile motion is determined completely by the vertical motion. Thus, any projectile that has an
initial vertical velocity of 21.2 m/s and lands 10.0 m below its starting altitude spends 3.79 s in the air.

(b) We can find the final horizontal and vertical velocities vx and vy with the use of the result from (a). Then,

we can combine them to find the magnitude of the total velocity vector v→ and the angle θ it makes with

the horizontal. Since vx is constant, we can solve for it at any horizontal location. We choose the starting point

because we know both the initial velocity and the initial angle. Therefore,

vx = v0 cosθ0 = (30 m/s)cos 45° = 21.2 m/s.

The final vertical velocity is given by Equation 4.21:

vy = v0y − gt.

Since v0y was found in part (a) to be 21.2 m/s, we have

vy = 21.2 m/s − 9.8 m/s2(3.79 s) = −15.9 m/s.

The magnitude of the final velocity v→ is

v = vx
2 + vy

2 = (21.2 m/s)2 + (− 15.9 m/s)2 = 26.5 m/s.

The direction θv is found using the inverse tangent:

θv = tan−1⎛
⎝
vy
vx

⎞
⎠ = tan−1 ⎛

⎝
21.2

−15.9
⎞
⎠ = −53.1°.

Significance

(a) As mentioned earlier, the time for projectile motion is determined completely by the vertical motion. Thus,
any projectile that has an initial vertical velocity of 21.2 m/s and lands 10.0 m below its starting altitude spends
3.79 s in the air. (b) The negative angle means the velocity is 53.1° below the horizontal at the point of impact.

This result is consistent with the fact that the ball is impacting at a point on the other side of the apex of the
trajectory and therefore has a negative y component of the velocity. The magnitude of the velocity is less than the
magnitude of the initial velocity we expect since it is impacting 10.0 m above the launch elevation.

Time of Flight, Trajectory, and Range
Of interest are the time of flight, trajectory, and range for a projectile launched on a flat horizontal surface and impacting
on the same surface. In this case, kinematic equations give useful expressions for these quantities, which are derived in the
following sections.

Time of flight

We can solve for the time of flight of a projectile that is both launched and impacts on a flat horizontal surface by performing
some manipulations of the kinematic equations. We note the position and displacement in y must be zero at launch and at
impact on an even surface. Thus, we set the displacement in y equal to zero and find
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y − y0 = v0y t − 1
2gt2 = (v0 sinθ0)t − 1

2gt2 = 0.

Factoring, we have

t⎛⎝v0 sinθ0 − gt
2

⎞
⎠ = 0.

Solving for t gives us

(4.24)Ttof = 2(v0 sinθ0)
g .

This is the time of flight for a projectile both launched and impacting on a flat horizontal surface. Equation 4.24 does not
apply when the projectile lands at a different elevation than it was launched, as we saw in Example 4.8 of the tennis player
hitting the ball into the stands. The other solution, t = 0, corresponds to the time at launch. The time of flight is linearly
proportional to the initial velocity in the y direction and inversely proportional to g. Thus, on the Moon, where gravity is
one-sixth that of Earth, a projectile launched with the same velocity as on Earth would be airborne six times as long.

Trajectory

The trajectory of a projectile can be found by eliminating the time variable t from the kinematic equations for arbitrary t and
solving for y(x). We take x0 = y0 = 0 so the projectile is launched from the origin. The kinematic equation for x gives

x = v0x t ⇒ t = x
v0x

= x
v0 cosθ0

.

Substituting the expression for t into the equation for the position y = (v0 sinθ0)t − 1
2gt2 gives

y = (v0 sinθ0)⎛⎝
x

v0 cosθ0

⎞
⎠ − 1

2g⎛
⎝

x
v0 cosθ0

⎞
⎠

2
.

Rearranging terms, we have

(4.25)
y = (tanθ0)x −

⎡

⎣
⎢ g
2(v0 cosθ0)2

⎤

⎦
⎥x2.

This trajectory equation is of the form y = ax + bx2, which is an equation of a parabola with coefficients

a = tanθ0, b = − g
2(v0 cosθ0)2.

Range

From the trajectory equation we can also find the range, or the horizontal distance traveled by the projectile. Factoring
Equation 4.25, we have

y = x
⎡

⎣
⎢tanθ0 − g

2(v0 cosθ0)2x
⎤

⎦
⎥.

The position y is zero for both the launch point and the impact point, since we are again considering only a flat horizontal
surface. Setting y = 0 in this equation gives solutions x = 0, corresponding to the launch point, and

x =
2v0

2 sinθ0 cosθ0
g ,

corresponding to the impact point. Using the trigonometric identity 2sinθcosθ = sin2θ and setting x = R for range, we

find
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(4.26)
R =

v0
2 sin2θ0

g .

Note particularly that Equation 4.26 is valid only for launch and impact on a horizontal surface. We see the range is
directly proportional to the square of the initial speed v0 and sin2θ0 , and it is inversely proportional to the acceleration of

gravity. Thus, on the Moon, the range would be six times greater than on Earth for the same initial velocity. Furthermore, we
see from the factor sin2θ0 that the range is maximum at 45°. These results are shown in Figure 4.15. In (a) we see that

the greater the initial velocity, the greater the range. In (b), we see that the range is maximum at 45°. This is true only for

conditions neglecting air resistance. If air resistance is considered, the maximum angle is somewhat smaller. It is interesting
that the same range is found for two initial launch angles that sum to 90°. The projectile launched with the smaller angle

has a lower apex than the higher angle, but they both have the same range.

Figure 4.15 Trajectories of projectiles on level ground. (a) The
greater the initial speed v0, the greater the range for a given

initial angle. (b) The effect of initial angle θ0 on the range of a

projectile with a given initial speed. Note that the range is the same
for initial angles of 15° and 75°, although the maximum

heights of those paths are different.

Example 4.9

Comparing Golf Shots

A golfer finds himself in two different situations on different holes. On the second hole he is 120 m from the
green and wants to hit the ball 90 m and let it run onto the green. He angles the shot low to the ground at 30°
to the horizontal to let the ball roll after impact. On the fourth hole he is 90 m from the green and wants to let
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the ball drop with a minimum amount of rolling after impact. Here, he angles the shot at 70° to the horizontal to

minimize rolling after impact. Both shots are hit and impacted on a level surface.

(a) What is the initial speed of the ball at the second hole?

(b) What is the initial speed of the ball at the fourth hole?

(c) Write the trajectory equation for both cases.

(d) Graph the trajectories.

Strategy

We see that the range equation has the initial speed and angle, so we can solve for the initial speed for both (a)
and (b). When we have the initial speed, we can use this value to write the trajectory equation.

Solution

(a) R =
v0

2 sin2θ0
g ⇒ v0 = Rg

sin2θ0
= 90.0 m(9.8 m/s2)

sin(2(70°)) = 37.0 m/s

(b) R =
v0

2 sin2θ0
g ⇒ v0 = Rg

sin2θ0
= 90.0 m(9.8 m/s2)

sin(2(30°)) = 31.9 m/s

(c)

y = x
⎡

⎣
⎢tanθ0 − g

2(v0 cosθ0)2x
⎤

⎦
⎥

Second hole: y = x
⎡

⎣
⎢tan 70° − 9.8 m/s2

2[(37.0 m/s)(cos 70°)]2x
⎤

⎦
⎥ = 2.75x − 0.0306x2

Fourth hole: y = x
⎡

⎣
⎢tan 30° − 9.8 m/s2

2[(31.9 m/s)(cos30°)]2x
⎤

⎦
⎥ = 0.58x − 0.0064x2

(d) Using a graphing utility, we can compare the two trajectories, which are shown in Figure 4.16.

Figure 4.16 Two trajectories of a golf ball with a range of 90 m. The
impact points of both are at the same level as the launch point.
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4.4

Significance

The initial speed for the shot at 70° is greater than the initial speed of the shot at 30°. Note from Figure 4.16

that two projectiles launched at the same speed but at different angles have the same range if the launch angles
add to 90°. The launch angles in this example add to give a number greater than 90°. Thus, the shot at 70° has

to have a greater launch speed to reach 90 m, otherwise it would land at a shorter distance.

Check Your Understanding If the two golf shots in Example 4.9 were launched at the same speed,
which shot would have the greatest range?

When we speak of the range of a projectile on level ground, we assume R is very small compared with the circumference
of Earth. If, however, the range is large, Earth curves away below the projectile and the acceleration resulting from gravity
changes direction along the path. The range is larger than predicted by the range equation given earlier because the projectile
has farther to fall than it would on level ground, as shown in Figure 4.17, which is based on a drawing in Newton’s
Principia. If the initial speed is great enough, the projectile goes into orbit. Earth’s surface drops 5 m every 8000 m. In 1
s an object falls 5 m without air resistance. Thus, if an object is given a horizontal velocity of 8000 m/s (or 18,000 mi/hr)
near Earth’s surface, it will go into orbit around the planet because the surface continuously falls away from the object. This
is roughly the speed of the Space Shuttle in a low Earth orbit when it was operational, or any satellite in a low Earth orbit.
These and other aspects of orbital motion, such as Earth’s rotation, are covered in greater depth in Gravitation.

Figure 4.17 Projectile to satellite. In each case shown here, a
projectile is launched from a very high tower to avoid air
resistance. With increasing initial speed, the range increases and
becomes longer than it would be on level ground because Earth
curves away beneath its path. With a speed of 8000 m/s, orbit is
achieved.

At PhET Explorations: Projectile Motion (https://openstaxcollege.org/l/21phetpromot) , learn about
projectile motion in terms of the launch angle and initial velocity.
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